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Oscillatory flow in a tube of time-dependent
curvature. Part 1. Perturbation to flow in a

stationary curved tube
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Motivated by the study of blood flow in the coronary arteries, this paper examines
the flow of an incompressible Newtonian fluid in a tube of time-dependent curvature.
The flow is driven by an oscillatory pressure gradient with the same dimensionless
frequency, α, as the curvature variation. The dimensionless governing parameters of
the flow are α, the curvature ratio δ0, a secondary streaming Reynolds number Rs
and a parameter Rt representing the time-dependence of curvature. We consider the
parameter regime δ0 � Rt � 1 (Rs and α remain O(1) initially) in which the effect of
introducing time-dependent curvature is to perturb the flow driven by an oscillatory
pressure gradient in a fixed curved tube. Flows driven by low- and high-frequency
pressure gradients are then considered. At low frequency (δ0 � Rt � α� 1) the flow
is determined by using a sequence of power series expansions (Rs = O(1)). At high
frequency (δ0 � Rt � 1/α2 � 1) the solution is obtained using matched asymptotic
expansions for the region near the wall (Stokes layer) and the region away from the
wall in the interior of the pipe. The behaviour of the flow in the interior is then
determined at both small and intermediate values of Rs. For both the low and high
frequency cases, we find the principal corrections introduced by the time-varying
curvature to the primary and secondary flows, and hence to the wall shear stress. The
physiological application to flow in the coronary arteries is discussed.

1. Introduction
The main application of the study of unsteady viscous flows in tubes of time-

dependent curvature is to blood flow in the coronary arteries. By far the most
common arterial disease is atherosclerosis, and in the coronary arteries alone it is
the cause of one third of all deaths in Western society. It has been found that
atherosclerotic plaques are distributed at preferential sites on the artery walls, such as
at the outer wall of an arterial bifurcation, the inside of curves, and regions where the
arterial cross-section undergoes an expansion. The sites at which early atherosclerotic
plaques are found, and their subsequent development, are now widely believed to
be correlated with the distribution of mean arterial wall shear stress and with its
pulsatility (Ku et al. 1985; Giddens, Zarins & Glagov 1993; Friedman 1993). It has
been observed that plaques tend to develop in regions of low mean wall shear stress
and regions where the shear stress changes direction in the course in the cardiac cycle
(Caro, FitzGerald & Schroter 1971). Such regions are sites of increased residence time
for circulating vasoactive and toxic materials. Thus one mechanism for atherogenesis
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is that the endothelium at these sites is exposed to increased contact with atherogenic
agents compared to sites where the wall shear stress is elevated or unidirectional.

We consider the extramyocardial coronary arteries that lie on the surface of the
beating heart. As the heart beats they experience both a rotation and a translation.
Moreover, their overall geometry, represented by the curvature and torsion of the
vessel centreline, as well as their diameter and length, changes with time. In this paper
we concentrate on variations in the vessel curvature. The flow of blood in the arteries
is pulsatile and as a step towards understanding the properties of unsteady flow in
a time-dependent curved tube, we shall examine flows driven by oscillatory pressure
gradients.

Considerable theoretical attention has been given to fully developed unsteady flow
in fixed uniform curved tubes, of small curvature, driven by a time-dependent pressure
gradient. The pioneering analytical study by Lyne (1971) considered a sinusoidally
oscillating pressure gradient, of period T , with zero mean. At large values of α
(= a(νT )−1/2, where a is the tube radius), Lyne developed a solution by the use of
two matched asymptotic expansions. The flow consists of an inviscid core surrounded
by a viscous Stokes boundary layer and the Stokes layer thickness, (νT )1/2, is small
compared with the tube radius a. Within the Stokes layer a secondary velocity is
generated by the nonlinear ‘centrifugal’ force terms in the equations. These secondary
motions have a non-zero mean which does not fall to zero at the edge of the Stokes
layer but instead drives a (two-vortex) steady secondary streaming in the core. The
details of this streaming are dependent upon a secondary streaming Reynolds number
Rs, but for all values of Rs the direction of the streaming is across the centreline of
the tube from the outside of the bend to the inside, the opposite sense to that for
steady flow in a curved tube (Dean 1927, 1928).

Mullin & Greated (1980a,b) also analysed oscillatory developing and fully developed
flow in a curved tube. They found an analytical solution to the governing equations
when α is assumed to be small, corresponding to the case of a low-frequency driving
pressure gradient. The leading-order axial and secondary flow is quasi-steady Dean
flow.

Subsequent workers have superimposed a mean onto the oscillatory driving pressure
gradient in order to investigate how the two types of secondary motion interact (Smith
1975; Blennerhassett 1976). Blennerhassett also found non-uniqueness at certain par-
ameter values. Numerical and experimental analysis of periodic flow in a curved
tube has also been carried out by Lin & Tarbell (1980), Rabadi, Simon & Chow
(1980); Hamakiotes & Berger (1990) and Zalosh & Nelson (1973). Quantitative
studies of pulsatile entry flow in a curved pipe using flow visualization and hot-film
anemometry were reported by Chandran, Yearwood & Wieting (1979) as well as
Chandran & Yearwood (1981) and later using laser Doppler anemometry by Talbot
& Gong (1983).

Non-fully developed steady and unsteady flow has been examined, both in the
forms of entry flow with a flat profile (Singh 1974; Yao & Berger 1975), and of flow
entering from a straight pipe with a parabolic profile (Smith 1976).

For more detailed reviews and an explanation of further curved tube flows see
Pedley (1980) and Berger, Talbot & Yao (1983).

The problem of flow in a tube with time-dependent curvature was first addressed
by Lynch, Waters & Pedley (1996). In that paper, the governing equations are derived
from the Navier–Stokes and continuity equations using a coordinate system fixed in
the frame of reference of the tube. The tube is assumed to be circular in cross-section
with a uniform radius that is independent of time. The centreline of the tube is
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assumed to be inextensible and points on the tube wall which at one instant lie in a
plane perpendicular to the centreline at a point S0 remain in that plane as S0 moves
and the plane rotates. The centreline is also assumed to lie in a constant plane (so
the torsion is zero). The blood itself is modelled as an incompressible homogeneous
viscous Newtonian fluid. The flows driven by a steady pressure gradient in (i) a tube
of uniform but time-dependent curvature; and (ii) a sinuous tube, representing a small
oscillation from a straight pipe, were analysed by asymptotic methods.

Here we consider fully developed flow driven by an oscillatory pressure gradient in
a tube of uniform time-dependent curvature, as a model for those extramyocardial
coronary arteries whose curvature is single signed and varies relatively slowly with
longitudinal position. The frequency of the pressure gradient oscillation is taken to be
the same as that of the curvature, corresponding to the haemodynamic application;
both low and high frequencies will be considered. The mean curvature, equal to the
ratio of the pipe radius to the mean radius of curvature of the pipe, is δ0. In § 2.1
we state the dimensionless governing equations. In § 2.2 we derive two secondary
streaming Reynolds numbers, Rs and Rs1 , which govern the secondary flow behaviour.
Although these Reynolds numbers are applicable at both small and large values of α,
their derivation is most clearly achieved by assuming α to be large. From Rs and Rs1
we define a further parameter Rt which, along with δ0, Rs and α, is an independent
governing parameter of the flow. In order that analytical progress can be made, the
many governing parameters are taken to be large or small. Thus there exist numerous
different cases for which asymptotic solutions to the governing equations may be
sought. In § 2.3 we consider one particular parameter regime in which the secondary
flow consists of a small perturbation to that in a fixed curved tube. (See Waters (1996)
for a parameter regime in which the secondary motions are driven by the oscillatory
rotation and are almost the same as if the pipe were straight.) In § 3 we determine the
leading-order governing equations for the chosen parameter regime. In § 4 we consider
the flow at low frequency (Rs remains O(1)). In § 5 we examine the high frequency
case and determine the behaviour of the flow at both small and intermediate values of
Rs. We are particularly interested in the secondary flow, especially the non-zero mean
part (steady streaming), and its influence on the axial flow. In both § § 4 and 5 the
effect of the time-varying curvature upon the secondary streaming and, consequently,
on the axial flow is determined. The magnitude and distribution of the resulting wall
shear stress is then found. Finally, in § 6 we briefly discuss the application of this
work to flow in the coronary arteries.

2. Governing equations and parameters
2.1. Full equations

The governing equations for the pressure-driven flow in a tube of time-dependent
curvature are derived in the paper by Lynch et al. (1996). Here we give a brief outline
of their derivation.

The equations are determined from first principles using the Navier–Stokes and
continuity equations for an incompressible viscous fluid:

∇ · û′ = 0, (2.1a)

∂û′

∂t̂

∣∣∣∣
I

+
(
û′ · ∇) û′ = −1

ρ
∇p̂+ ν∇2û′. (2.1b)

These equations have been written with respect to an inertial frame of reference
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Figure 1. The curvilinear coordinate system.

(x̂, ŷ, ẑ); (ex, ey, ez) denote the Cartesian coordinate directions, û′ is the dimensional

velocity vector in this frame, p̂ is the dimensional pressure and t̂ is the dimensional
time; ρ denotes the density and ν the kinematic viscosity of the fluid. We are
considering the flow in a tube that is both rotating and translating. A non-inertial,
curvilinear coordinate system, (r̂, θ, ŝ), is chosen that moves and deforms with the pipe:
ŝ is the dimensional distance along the centreline from a specified origin, O, and (r̂, θ)
are polar coordinates in the plane of cross-section of the tube (figure 1); (er, eθ, es)
denote the curvilinear coordinate directions. The tube wall is taken to be at r̂ = a. We
consider a change in coordinate system from the inertial Cartesian coordinate system
(x̂, ŷ, ẑ ), where the centreline moves in the (x̂, ŷ)-plane, to the non-inertial system
(r̂, θ, ŝ).

We postulate that one cross-section, at ŝ = 0, is fixed with its centre at the origin
and the tangent to the centreline locally in the ey-direction. The equations are written
in terms of the velocity relative to that of the tube wall, so that the no-slip boundary
condition for viscous flow at the tube wall can be applied simply; û = (û, v̂, ŵ) are
the velocity components in the (er, eθ, es) directions and R̂ is the radius of curvature.
The curvature ratio, δ, is given by δ = a/R̂. (Here ‘hats’ denote dimensional quantities.)
The variables are non-dimensionalized as follows:

(û, v̂, ŵ)→ U0(u, v, w),

(r̂, ŝ)→ a(r, s),

R̂ → aR,

p̂→ ρU2
0p,

t̂→ Tt,


(2.2)

where U0 is a suitable velocity scale and T is the period of the oscillations. The
non-dimensional governing equations are then:
continuity

ur +
1

r
vθ +

1

h
ws +

1

r
u+

δ cos θ

h
u− δ sin θ

h
v +

α2 δ̇r cos θ

Re h
= 0, (2.3a)
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er

α2

Re
ut + uur +

1

r
vuθ +

1

h
wus − 1

r
v2

+
α4

Re2
cos θ

(
− δ̈

δ2
+

2δ̇2

δ3

)
(1− cos sδ)− α2

Re
sδ̇ cos θ

(
2w +

α2

Re

sδ̇h

δ

)
− δ cos θ

h
w2

= −pr − 1

Re rh

{
∂

∂θ

[
h

r
(v + rvr − uθ)

]
− ∂

∂s

[
r

h
(−δ cos θ w − hwr + us)

]}
−2α2δ̇ cos θ

Re2 h
, (2.3b)

eθ

α2

Re
vt + uvr +

1

r
vvθ +

1

h
wvs +

1

r
uv

− α4

Re2
sin θ

(
− δ̈

δ2
+

2δ̇2

δ3

)
(1− cos sδ) +

α2

Re
sδ̇ sin θ

(
2w +

α2

Re

sδ̇h

δ

)
+
δ sin θ

h
w2

= −1

r
pθ +

1

Re h

{
∂

∂r

[
h

r
(v + rvr − uθ)

]
− ∂

∂s

[
1

rh
(−δr sin θ w + hwθ − rvs)

]}
+

2α2δ̇ sin θ

Re2 h
, (2.3c)

es

α2

Re
wt + uwr +

1

r
vwθ +

1

h
wws +

α4

Re2

(
− δ̈

δ2
+

2δ̇
2

δ3

)
sin sδ + 2

α2

Re
sδ̇ cos θ u

−2
α2

Re
sδ̇ sin θ v − 2α4sδ̇2

Re2 δ2
+
α4sδ̈h

Re2 δ
+
δ cos θ

h
uw − δ sin θ

h
vw +

α2δ̇r cos θ

Re h
w

= −1

h
ps +

1

Re r

{
∂

∂θ

[
1

hr
(hwθ − δr sin θ w − rvs)

]
− ∂

∂r

[
r

h
(−hwr − δ cos θ w + us)

]}
. (2.3d)

Here

h = [1 + δ(t) r cos θ] (2.4)

and is 1/R times the distance from the centre of curvature of the centreline (at a
particular s) to the projection on the plane containing the centreline of a general
point (r, θ, s). The boundary conditions are that

u = (u, v, w) = 0 on r = 1. (2.5)

α is the dimensionless frequency, known as Womersley’s parameter, and Re is the
Reynolds number; they are defined by

α =

(
a2

νT

)1/2

, Re =
U0 a

ν
. (2.6)
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In the analysis that follows, it is convenient to follow Lyne (1971) and take the
velocity scale U0 equal to ν/a so that formally Re = 1. Physically, α2 is the ratio
of the frequency of the oscillations to the inverse time scale for viscous diffusion
of momentum across the boundary layer. Thus for small values of α the flow is
essentially quasi-steady and is viscous throughout. However, for large values of α
the rate of viscous diffusion is small compared with the frequency and the effects of
viscous diffusion are confined to thin layers on the boundary.

In equation (2.3b) the term α4 cos θ (−δ̈/δ2 +2δ̇2/δ3) (1−cos sδ) is the first new term
due to time-dependence of curvature. It results from the acceleration of the frame
of reference. The next term, −α2sδ̇ cos θ 2w is a ‘Coriolis’ force associated with the
rotation of the frame of reference. The term −α2 sδ̇ cos θ α2(sδ̇h/δ) is a combination
of a centrifugal-force-type term resulting from the rotation of the reference frame and
a term due to the acceleration of the frame of reference. The final term in equation
(2.3b) is a viscous term associated with the deformation of the frame of reference.
The origin of the new terms is similar for equation (2.3c). In equation (2.3d), the
terms 2α2sδ̇ cos θ u and −2α2sδ̇ sin θ v are ‘Coriolis’ force terms, (−2α4sδ̇2/δ2 results
from the reference frame acceleration and (α4sδ̈h)/δ derives from acceleration terms
and a centrifugal force term. The additional ‘new’ inertia term is the one linear in
w at the end of the third line of (2.3d); this cannot be attributed to any classical
‘forces’ seen in the systems translating and rotating with uniform acceleration and
angular velocity, and represents spatial variations in these quantities. All the other
terms in equations (2.3b–d) arise also in flow in a fixed curved pipe (see Pedley 1980,
chapter 4).

We shall consider the curvature to be

δ = δ0(1 + ε sin t), (2.7)

so that the variation of curvature with time is assumed to be sinusoidal. Here δ0 is the
mean curvature and ε represents the amplitude of its oscillations. We shall take both
δ0 and ε to be small, so that the curvature is small and varies only by a small amount.
Note that δ̇ = δ0 ε cos t and δ̈ = −δ0 ε sin t. Now δ = 1/R and so δ̇ = −Ṙ/R2.
Thus cos t > 0 corresponds to Ṙ < 0, i.e. to the radius of curvature decreasing with
time (negative rotation). Similarly, cos t < 0 corresponds to the radius of curvature
increasing with time (positive rotation). The dimensionless axial pressure gradient is
given by

−ps = α2 Wp cos (t+ Φ), (2.8)

where Wp is the dimensionless velocity amplitude that would be driven by such a
pressure gradient in a straight pipe containing an inviscid fluid and Φ represents the
phase difference between the oscillatory pressure gradient and the time-dependent
curvature. Note that because the chosen velocity scale is ν/a, Wp is a Reynolds
number for the primary axial flow.

One important feature of curved tube flow is the secondary motion that arises in
the cross-sectional plane. This secondary motion itself influences the distribution of
axial velocity and results in a complicated interaction of the two. We shall determine
the secondary flows that arise due to both the mean and the time-dependent curvature
components. We are particularly interested in the non-zero mean part of the secondary
flow and its influence on the axial flow and in the magnitude and distribution of
the resulting wall shear stress perturbations. The axial and azimuthal components of
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dimensionless wall shear stress are defined as follows:

Axial wall shear stress = −wr|r=1, (2.9a)

Azimuthal wall shear stress = −vr|r=1. (2.9b)

2.2. Derivation of the secondary streaming Reynolds numbers when α� 1

The secondary flow behaviour, in the cross-sectional plane of the tube, is determined
by the secondary streaming Reynolds numbers, Rs and Rs1 . These are derived in the
same way as a conventional Reynolds number except that the velocity scales used
are the characteristic secondary velocity scales. The secondary velocity that arises due
to the mean curvature of the tube leads to one velocity scale, while the secondary
velocity generated by the time-dependence of curvature leads to another. These scales
may be found by inspection of equations (2.3a–d) and are the same for both the low
and high frequency cases. However, the interpretation of the secondary streaming
Reynolds numbers as the controlling parameters for the secondary flow behaviour is
most clearly seen by considering the large-α case, as detailed below. The quantities
obtained are equally applicable to the small-α case.

Lyne (1971) examined flow driven by a high-frequency pressure gradient in a fixed,
weakly curved pipe. Here we extend Lyne’s analysis to the case of a tube with time-
dependent curvature. As in the fixed curved tube case, at large values of α, we expect
the flow to consist of an inviscid core surrounded by a viscous Stokes boundary layer,
of dimensionless thickness O(1/α), on the boundary at r = 1. In the core of the pipe,
a balance exists between the centrifugal forces that arise due to the curvature of the
pipe, the new terms introduced by the time-dependent curvature and the pressure
gradient in that plane. In the Stokes layer the value of w, the axial velocity, must be
zero at the wall (no-slip condition). Thus in the boundary layer there will no longer
be a balance between the pressure gradient and the centrifugal and Coriolis force
terms since the pressure gradient remains essentially unchanged while the latter terms,
which are proportional to w, have diminished. Thus oscillatory secondary motions,
primarily consisting of a θ-component of velocity, v, are generated by the interaction
of the local inertia term and the viscous forces with the centrifugal and Coriolis forces
respectively. The solution for v will contain an oscillation of double the fundamental
frequency, and a mean flow. These secondary flows must satisfy the no-slip condition
at the boundary. However, it is impossible also to impose the condition that these
flows tend to zero at the edge of the Stokes layer. Instead, the secondary motions
‘drag’ the fluid in the core of the tube, thus generating secondary motions there. The
details of the core flow will depend on the value of the secondary streaming Reynolds
numbers, Rs and Rs1 (see below).

We take the curvature to be small and thus consider a small-parameter expansion
in powers of δ0:

u = u0 + (2δ0)u1 + · · · ,
v = v0 + (2δ0)v1 + · · · ,
w = w0 + (2δ0)w1 + · · · ,
p = p0 + (2δ0)p1 + · · · .

 (2.10)

If the viscous terms in equations (2.3a)–(2.3d) are dropped, they have a solution,
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satisfying u = 0 at r = 1, in which the velocity and pressure distributions are

u = (2δ0)
[− 3

16
α2ε cos θ (1− r2) cos t

]
+ O((2δ0)

2),

v = (2δ0)
[

3
16
α2ε sin θ (1− 1

3
r2) cos t

]
+ O((2δ0)

2),

w=Wp sin (t + Φ) + (2δ0)
[−α4 εr cos θ s cos t+O(α2)× s-indep. terms

]
+O((2δ0)

2),

p = (2δ0)
[
α2εWp r cos θ s cos t sin(t+ Φ)− α2εr cos θ cos t

− 1
4
α4εr cos θ s2 sin t+ 1

2
(1 + ε sin t)W 2

p r cos θ sin2(t+ Φ)

− 3
16
α4 ε (r − 1

3
r3) cos θ sin t

]
+ O((2δ0)

2).


(2.11)

This can be considered as the primary core flow. In a fixed curved pipe there is
no secondary flow in the plane of cross-section as there is a balance between the
centrifugal force terms and the pressure gradient in that plane. Here the introduction
of time-dependent curvature results in non-zero radial and azimuthal velocities, u
and v. These are necessary in order that the continuity equation, (2.3a), is satisfied at
O(2δ0). The fluid pressure adjusts in order to balance the s-dependent Coriolis forces
that arise due to the rotation of the frame of reference, the s2-dependent terms that
arise due to the translation of the frame of reference and the viscous terms associated
with the deformation of the frame of reference (see equations (2.3b, c)). There is also
an adjustment to balance the local inertial terms in (2.3b, c), involving the new radial
and circumferential velocities. Note that the secondary velocities and the pressure
distribution are O(2δ0) compared with the leading-order axial velocity, and thus are
much smaller.

We are interested in determining the magnitude of the secondary velocities that are
generated in the boundary layer, since from these the secondary streaming Reynolds
numbers can be derived.

For α� 1, we introduce the boundary-layer coordinate

η =
α√
2

(1− r). (2.12)

Solutions are sought of the form:

w = W0 + (2δ0)W1 + (2δ0)
2W2 + · · · ,

u = U0 + (2δ0)U1 + (2δ0)
2U2 + · · · ,

v = V0 + (2δ0)V1 + (2δ0)
2V2 + · · · ,

p = P0 + (2δ0)P1 + (2δ0)
2P2 + · · · ;

 (2.13)

u, v and w must satisfy the no-slip boundary condition at η = 0, and must match the
core flow as η →∞.

Substitution of (2.12) and (2.13) into the governing equations (2.3a–d) gives the
boundary layer equations at successive orders of (2δ0).

The equations at O((2δ0)
0) are just the boundary layer equations for flow in

a straight tube driven by an oscillatory axial pressure gradient. The solution to
these equations that matches with the core and satisfies the no-slip condition at the
boundary is the Stokes layer flow:

U0 = 0, V0 = 0, W0 = Wp (sin (t+ Φ)− e−η sin (t+ Φ− η)), P0 = 0. (2.14)

Thus at leading order there are no components of secondary velocity and the axial
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velocity adjusts to satisfy the no-slip condition. New terms are introduced into the
governing equations by the time-dependence of curvature only at O(2δ0):

continuity

−(α/
√

2)U1η +
1

(1− (
√

2/α)η)
V1θ +

1

(1− (
√

2/α)η)
U1 +W1s

+ 1
2
(1 + ε sin t) cos θ U0 − 1

2
(1 + ε sin t) sin θV0

+ 1
2
α2ε (1− (

√
2/α)η) cos θ cos t = 0, (2.15a)

er

α2U1t − (α/
√

2)(U0U1η +U1U0η) +
1

(1− (
√

2/α)η)
(V0U1θ + V1U0θ)

+W0U1s +W1U0s − 1
2
(1 + ε sin t) (1− (

√
2/α)η) cos θW0U0s

− 2

(1− (
√

2/α)η)
V0V1 + 1

4
α4ε cos θ s2 sin t− α2ε cos θ s cos tW0

− 1
2
(1 + ε sin t) cos θW 2

0 = (α/
√

2)
∂P1

∂η
− 1

(1− (
√

2/α)η)

×
{
∂

∂θ

[
1

(1− (
√

2/α)η)
× (V1 − (α/

√
2)(1− (

√
2/α)η)V1η −U1θ)

]
− ∂

∂s
[(1− (

√
2/α)η)((α/

√
2)W1η +U1s)]

}
− α2ε cos θ cos t, (2.15b)

and similarly for eθ ,

es

α2W1t − (α/
√

2)(U0W1η +U1W0η) +
1

(1− (
√

2/α)η)
(V0W1θ + V1W0θ)

+W0W1s +W1W0s + α2ε cos θ s cos tU0 − α2ε sin θ s cos tV0

− 1
2
α4ε (1− (

√
2/α)η) cos θ s sin t

= −P1s + 1
2
(1 + ε sin t) cos θ (1− (

√
2/α)η)P0s

+
1

(1− (
√

2/α)η)

{
∂

∂θ

(
1

(1− (
√

2/α)η)
W1θ

)
+ (α/

√
2)
∂

∂η
((α/
√

2)W0η)

}
. (2.15c)

An expansion in powers of (1/α) is proposed:

W1 = α2(W10 + (1/α)W11 + · · ·),
U1 = α2(U10 + (1/α)U11 + · · ·),
V1 = α2(V10 + (1/α)V11 + · · ·),
P1 = α4(P10 + (1/α)P11 + · · ·).

 (2.16)

(Here we have assumed that α is large, but still δ0 � 1/α2 � 1.)
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At leading order equation (2.15a) gives

− 1√
2
U10η = 0 (2.17)

which, together with the boundary condition that U10 = 0 on η = 0, implies that
U10 ≡ 0.

Equation (2.15b) gives that P10η = 0 and so, matching with the pressure in the core
given by (2.11), we have

P10 = − 1
8
ε cos θ sin t− 1

4
ε cos θ s2 sin t. (2.18)

The leading-order eθ equation simplifies to

V10t − 1
2
V10ηη = − 1

8
ε sin θ sin t. (2.19)

The solution for V10, that satisfies no-slip and the matching condition given by
(2.11), is

V10 = 1
8
ε sin θ

[
cos t− e−η cos (t− η)

]
. (2.20)

By considering the axial equation at leading order we find that

W10 = −ε cos θ s
[
cos t− e−η cos (t− η)

]
; (2.21)

these both represent Stokes layers driven by the O(2δ0) primary core flow.
Similarly, the er and eθ equations, at O(α4) and O(α3) respectively, give that

P11 = 1
4

√
2εη cos θ s2 sin t, (2.22)

and

V11 = − 1
8

√
2εη sin θ cos t− 1

16

√
2η e−ηε sin θ cos (t− η). (2.23)

V11, like V10, is driven by the primary core flow. The continuity equation, (2.15a), at
O(α2) gives

U11 = − 3
8

√
2εη cos θ cos t+ 7

8
ε cos θ

[
sin (t− η + 1

4
π)− e−η sin (t− η + 1

4
π)
]
. (2.24)

Note that U11 does not match the core velocity as η → ∞ (a displacement effect,
present in all boundary layers).

Equation (2.15b) at O(α3) gives

1√
2
P12η = 3

8

√
2εη cos θ sin t− 7

16

√
2ε cos θ sin t+ 7

16

√
2ε cos θ cos t, (2.25)

and so

P12 = 3
8
εη2 cos θ sin t + 7

8
εη cos θ (cos t− sin t) − ε cos θ cos t

+εWp cos θ s sin (t+ Φ) cos t. (2.26)

The eθ equation at O(α2) is

V12t − 1
2
V12ηη + ε sin θ s cos tW0 = −P12θ −

√
2ηP11θ − 2η2P10θ + viscous terms. (2.27)

The terms on the right-hand side of (2.27) will lead to a contribution to V12 that
is driven by the primary core flow. However, the term ε sin θs cos tW0 will lead to a
contribution to V12 that is O(εWp). This contribution to V12 is the first Stokes layer
secondary velocity that is not driven by the primary core flow. It is generated by the
Coriolis terms that arise because the pipe under consideration has time-dependent
curvature.
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P13 is determined from the radial equation (2.15b) at O(α2) and at O(α) the equation
for V13, obtained from the eθ equation is

V13t − 1
2
V13ηη + ε sin θ s cos tW01

= −P13θ −
√

2ηP12θ − 2η2 P11θ − 2
√

2η3P10θ + viscous terms. (2.28)

Again, the terms on the right-hand side of equation (2.28) will lead to a contribution
to V13 that is driven by the primary core flow. Moreover, since W01 = 0, the term on
the left-hand side of the equation does not yield any secondary velocities.

Equation (2.15b) at O(α) gives P14 and the eθ equation at O(1) gives

V14t − 1
2
V14ηη +

(1 + ε sin t) sin θ

2
W 2

0

= − P14θ −
√

2ηP13θ − 2η2 P12θ − 2
√

2η3P11θ − 4 η4P10θ + viscous terms. (2.29)

As before, the terms on the right-hand side lead to a primary core flow driven
component of V14. However the term (1+ε sin t) sin θW 2

0 /2 will generate a contribution
to V14, which will have a non-zero mean since the product W 2

0 contains time-
independent terms. It is easily seen that, since W0 = O(Wp), V14 = O(W 2

p ). This is the
scale of the secondary velocity that is generated in the Stokes layer by the centrifugal
force effects that arise because the tube is curved. (V14 is just Lyne’s quasi-steady
secondary velocity.)

The solutions of (2.27) and (2.29) do not match to the core solutions as η → ∞.
The solutions for both V12 and V14 satisfy the no-slip condition at the boundary, but,
in both cases, the velocity does not fall to zero as η → ∞. Instead, these secondary
motions ‘drag’ the fluid in the core of the tube, thus generating secondary motions
outside the boundary layer. For non-zero Φ, both V12 and V14 will generate steady
secondary streaming in the core.

Putting these results back into dimensional form, we obtain

V̂12∞ = O(νεWp(2δ0)/a) (2.30)

and

V̂14∞ = O(νW 2
p (2δ0)/(aα

2)) (2.31)

where V̂12∞ and V̂14∞ are the velocities at the edge of the Stokes layer.
Thus the secondary streaming Reynolds numbers are defined to be

Rs1 = V̂12∞ a/ν = εWp(2δ0),

2Rs = V̂14∞ a/ν = W 2
p (2δ0)/α

2.

}
(2.32)

Rs is the secondary streaming Reynolds number based on the scale of the secondary
velocity that arises because the tube is curved, and is the same as that determined
by Lyne for a fixed curved tube. Rs1 is the secondary streaming Reynolds number
based on the scale of the secondary velocity that arises from the time-dependence of
curvature.

Substitution of δ, δ̇ and δ̈ into equations (2.3a–d) reveals that the product of αε
frequently occurs. Thus we define a new parameter, Rt, as

Rt = αε = Rs1/[(2Rs)
1/2 (2δ0)

1/2]. (2.33)
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2.3. Parameter scalings

Equations (2.3a–d) are very complicated and cannot be solved as they stand. In order
to simplify the problem and to isolate the effects of the various new terms upon
the magnitude and distribution of wall shear stress, and the generation of steady
secondary streaming, various perturbative techniques are carried out.

The four governing parameters of the problem are δ0, Rt, (2Rs)
1/2 and α. In this

paper we examine one particular choice of parameter scalings. Initially α and Rs are
chosen to be order one compared with δ0 and Rt, although they are later taken to
be either large or small. We shall consider δ0 to be the smallest parameter of the
problem and take δ0 → 0, while keeping Rt = O(1). Rt is then taken to be small
because ε � 1. (ε is chosen to be sufficiently small that Rt can be taken to be small
even in the case where α � 1, as in § 5.) We shall show that the leading-order flow
is just that driven by an oscillatory pressure gradient in a fixed curved pipe (§ 3). At
O(Rt), effects due to the unsteadiness of the curvature are first seen. The details of
this problem are described in §§ 4, 5 for low and high frequencies respectively.

3. Perturbation to oscillatory flow in a fixed, curved pipe
We now proceed to solve equations (2.3a–d) together with the boundary condition

(2.5) for flows driven by both low- and high-frequency pressure gradients subject to
the parameter scaling discussed in § 2.3.

The axial velocity is rescaled so that the centrifugal force terms in the governing
equations are formally the same order of magnitude as the viscous and inertial
terms. Thus we take w → w/(2δ0)

1/2; we also take s → s/(2δ0)
1/2. δ, δ̇ and δ̈

are substituted into (2.3a–d) and Rt is defined as in (2.33). Note that −∂p(s)/∂s =
α3(2Rs)

1/2 cos (t + Φ)/(2δ0)
1/2. Since δ0 is the smallest parameter of the problem, we

delete all terms that are O(δ0) relative to the leading terms. Next a small-parameter
expansion is carried out in powers of Rt:

w = w0 + Rt w1 + · · · ,
u = u0 + Rt u1 + · · · ,
v = v0 + Rt v1 + · · · ,
p = p0 + Rt p1 + · · · ,

 (3.1)

and we consider the equations at various orders of Rt. At leading order, O(R0
t ), the

equations are the same as for flow in a fixed curved pipe.
At O(Rt) the equations are (dropping overbars):

continuity:

u1r +
1

r
v1θ + w1s +

1

r
u1 = 0, (3.2a)

er:

α2u1t + u0 u1r + u1u0r +
1

r
v0 u1θ +

1

r
v1u0θ + w0 u1s + w1u0s − 2

r
v0 v1

+ 1
4
α3 cos θ s2 sin t− α cos θ s cos t w0 − cos θ w0w1 − 1

α
cos θ sin t w2

0

= −p1r − 1

r

{
∂

∂θ

[
1

r
(v1 + rv1r − u1θ)

]
− ∂

∂s
(−rw1r)

}
, (3.2b)
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eθ:

α2v1t + u0 v1r + u1v0r +
1

r
v0 v1θ +

1

r
v1v0θ + w0 v1s + w1v0s +

1

r
(u0 v1 + u1v0)

− 1
4
α3 sin θ s2 sin t+ α sin θ s cos t w0 + sin θ w0w1 +

1

α
sin θ sin t w2

0

= −1

r
p1θ +

{
∂

∂r

[
1

r
(v1 + rv1r − u1θ)

]
− ∂

∂s

(
1

r
w1θ

)}
, (3.2c)

es:

α2w1t + u0w1r + u1w0r +
1

r
(v0w1θ + v1w0θ) + w0w1s + w1w0s = ∇2w1. (3.2d)

Thus at this order, effects due to the time-dependence of curvature are present.
Note that new terms exist in equations (3.2b, c) but there are no additional new
terms to the axial momentum equation (3.2d). By assuming Rt � 1 we have taken
Rs1 � (2Rs)

1/2 (see equation (2.33)) so that the velocity at the edge of the Stokes layer
that arises due to the time-dependence of curvature is less than that arising because
the tube is curved.

4. Low frequency
4.1. Solution

In this section we consider flows at low frequency, α� 1 (in fact δ0 � Rt � α� 1).
We therefore consider a small-parameter expansion in powers of α. Rs is assumed to
remain O(1) compared with the other governing parameters.

At O(R0
t ), the equations for flow in a fixed curved pipe are obtained (Mullin &

Greated 1980b). The radial and azimuthal equations may be combined in a single
equation for the streamfunction, ψ0. The following expansions for the axial velocity,
w0, and the streamfunction, ψ0, are then considered:

w0 = α3w00 + α4w01 + · · · ,
ψ0 = α6ψ00 + α7ψ01 + · · · .

}
(4.1)

The leading-order axial velocity, driven by the applied oscillatory pressure gradient,
is just

w00 = 1
4
(2Rs)

1/2 (1− r2) cos (t+ Φ). (4.2)

Thus the leading-order axial wall shear stress is

−w00r|r=1 = 1
2
(2Rs)

1/2 cos (t+ Φ). (4.3)

The balance of the local inertia term with the viscous term in the axial velocity
equation leads to the following further corrections to the axial velocity:

w01 = 0,

w02 = 1
64

(2Rs)
1/2 (3− r2) (1− r2) sin (t+ Φ),

w03 = 0,

wa04 = 1
64

(2Rs)
1/2 (− 19

36
+ 3

4
r2 − 1

4
r4 + 1

36
r6) cos (t+ Φ).

 (4.4)

Both w02 and wa04 are symmetric in r. Note that we let w04 = wa04 +wb04 since the axial
velocity at this order consists of two parts: a symmetric part, wa04, and a term, wb04,
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that is asymmetric in r (see below). The leading-order streamfunction is

ψ00 =
1

8× 144
Rs r(1− r2)2 (1− 1

4
r2) sin θ cos2(t+ Φ). (4.5)

The leading-order azimuthal wall shear stress, (2.9b), is

ψ00rr|r=1 = 1
192
Rs sin θ cos2(t+ Φ). (4.6)

Equations (4.2) and (4.5) are the quasi-steady equivalent of the leading-order Poiseuille
axial velocity and streamfunction found for Dean flow. The term (1/r)ψ00θ , propor-
tional to the radial velocity, is positive on θ = 0 (and negative on θ = π). Thus, for
small frequencies, the steady component of streaming in the core proceeds across the
tube from the inside of the bend to the outside (as in Dean flow). This secondary
streamfunction advects the leading-order quasi-steady Poiseuille velocity, w00, which
results in a ‘skewing’ of the previously symmetric axial velocity profile. This axial
velocity perturbation is

wb04 =
1

45× 85
(2Rs)

3/2 r(1− r2) (19− 21r2 + 9r4 − r6) cos θ cos3(t+ Φ). (4.7)

Thus the curvature of the pipe leads to the distortion of the axial velocity profile
and an increase in the wall shear stress on the outside of the wall. The results are
s-independent. At this order there are no new effects due to the unsteadiness of the
curvature. In order to understand the effects of time-dependent curvature on the flow,
we must consider the equations at O(Rt).

To solve the O(Rt) equations, (3.2a–d), we consider the following small-parameter
expansion in powers of α:

w1 = α7w10 + α8w11 + · · · ,
u1 = α4u10 + α5u11 + · · · ,
v1 = α4v10 + α5v11 · · · ,
p1 = α3p10 + α4p11 + · · · .

 (4.8)

(The expansion in powers of α is taken to a sufficiently high degree to obtain the first
new effects from the time-dependent curvature.)

At O(α3) equations (3.2b, c) give

p10 = − 1
4
r cos θ s2 sin t; (4.9)

the fluid pressure adjusts to balance the new centrifugal-force term that arises from
the time-dependence of pipe curvature. It prevents the fluid being ‘flung’ out along
the pipe.

At O(α4) and O(α5) equation (3.2a) admits the existence of streamfunctions ψ10 and
ψ11 such that u10 = (1/r)ψ10θ , v10 = −ψ10r and similarly for u11 and v11.

At O(α4) equations (3.2b, c) can be combined to give

∇4ψ10 = 1
2
(2Rs)

1/2r sin θ s cos t cos (t+ Φ), (4.10)

which has solution

ψ10 =
1

2× 384
(2Rs)

1/2r (1− r2)2 sin θ s (cos (2t+ Φ) + cosΦ). (4.11)

This secondary streaming results from the interaction between the viscous terms and
the Coriolis force term that arises from the time-dependence of curvature.
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O
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O

cos t < 0cos t > 0

cos (t +φ) > 0cos (t +φ) > 0

Figure 2. Sketch of axial velocity perturbation, w10, with corresponding direction of secondary
streaming, ψ10, shown below. For cos t > 0 (negative rotation) and cos (t+Φ) > 0 (flow in a positive
sense) axial velocity skewed towards the outside wall, resulting in increased wall shear stress there.
For cos t < 0 and cos (t+ Φ) > 0 the opposite is true.

At leading order (3.2d) gives an equation for w10 which has solution

w10 = 1
18432

(2Rs) cos θ s cos t cos2(t+ Φ) r(1− r2)(3− 3r2 + r4). (4.12)

4.2. Discussion

The first new contribution to the axial velocity from the time-dependence of curvature
is w10. It is an O(Rt) perturbation to the axial velocity profile obtained for a fixed
curved pipe, and is due to the advection of the leading-order quasi-steady Poiseuille
velocity by the new secondary streaming which results in a ‘skewing’ of the axial
velocity profile. This skewing may enhance or diminish the skewing of the axial
velocity profile that arises merely due to the pipe being curved.

At any given time t, the direction of the secondary streaming and hence the
‘skewing’ of the axial velocity depends on the relative signs of cos t and cos (t + Φ)
(since r (1− r2)2 and r (1− r2) (3− 3r2 + r4) are always positive for r between 0 and
1). For example, if cos (t+ Φ) is positive, so that the flow is in a positive sense along
the pipe, and cos t > 0, so that the pipe is rotating in a negative sense, the streaming
is from the inside of the bend to the outside. Thus the skewing of the axial velocity
will be towards the outside wall of the pipe, enhancing the effect of pipe curvature
and increasing the wall shear stress there. If, however, cos t < 0 while cos (t+Φ) > 0,
the streaming is in the opposite sense and the skewing of the axial velocity profile
will be towards the inside wall, increasing the wall shear stress there. The dependence
of ψ10 on the axial coordinate s means that its influence on the axial velocity profile
will become more pronounced as we move away from the fixed origin (figure 2). The
new streaming, ψ10, is an order of magnitude smaller than the streaming that results
solely from the tube curvature and thus its influence on the axial velocity profile will
be small.

We are particularly interested in the properties of the steady components of the
secondary streaming and the wall shear stress. The direction of the steady component
of the s-dependent secondary streaming, ψ10, depends on the sign of cosΦ. If cosΦ is
positive then the steady part of (1/r)ψ10θ is positive on θ = 0 (and negative on θ = π)
and thus the steady component of the secondary streaming proceeds across the centre
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of the pipe from the inside of the bend to the outside, in the same sense as for steady
curvature. However, if cos Φ is negative then the steady secondary streaming is in the
opposite sense. When cosΦ = 0, i.e. when the time-dependent curvature variations are
out of phase with the oscillatory pressure gradient by π/2, there is no contribution
to the steady secondary streaming at this order.

The axial wall shear stress perturbation, due to the advection of w00 by the
secondary streaming, ψ10, is

−w10r|r=1 = 1
9216

(2Rs) cos θ s cos t cos2(t+ Φ), (4.13)

and thus, when cos t > 0, the wall shear stress is increased on the outside wall and
decreased on the inside wall (with the opposite being the case when cos t < 0.) The
azimuthal wall shear stress perturbation, from (4.11), is

ψ10rr|r=1 = 1
96

(2Rs)
1/2 sin θ s (cos (2t+ Φ) + cosΦ). (4.14)

In the above analysis Rs is assumed to remain O(1) as all the other parameters tend
to zero.

The time-dependency of the secondary streaming, ψ10, means that w10 may be very
small for certain ranges of t. Within this range, the axial velocity terms at higher
powers of α may have an appreciable effect.

5. High frequency
5.1. Secondary core flow equations

In this section, the small-Rt perturbation to Lyne’s solution for flow driven by a high-
frequency oscillatory pressure gradient in a fixed curved pipe is found. We assume
that δ0 � Rt � 1/α2 � 1 and Rs remains O(1) initially.

At O(R0
t ) the equations are the s-independent equations for flow in a fixed, curved

pipe. Lyne (1971) analysed this problem and showed that the leading-order steady
streaming in the core ψ(s)

00 = Rs χ00 is given by the solution to

1

Rs
∇4χ00 +

1

r

(
χ00r

∂

∂θ
− χ00θ

∂

∂r

)
∇2χ00 = 0,

χ00 = 0, χ00r = 1
4

sin θ on r = 1,

 (5.1)

which makes it clear that Rs is the steady streaming Reynolds number (see § 2.2).
As found in § 4 for small α, at leading order the equations contain no new terms

due to the unsteadiness of curvature. Thus it is necessary to consider the equations
at O(Rt), (3.2a–d), which suggest that u1, v1, w1 and p1 depend on s as follows:

u1 = su10 + u11,
v1 = sv10 + v11,
w1 = w10,
p1 = s2p10 + sp11 + p12.

 (5.2)

We are most interested in finding the s-dependent velocities since it is these that arise
from the introduction of time-dependent curvature. We find at O(s2) that

p10 = − 1
4
α3r cos θ sin t, (5.3)

which is just the fluid pressure adjustment to balance the new centrifugal-force terms.
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The s-dependent equations are:
continuity

u10r +
1

r
v10θ +

1

r
u10 = 0, (5.4a)

er

α2u10t + u0 u10r + u10 u0r +
1

r
v0 u10θ +

1

r
v10 u0θ − 2

r
v0 v10 − α cos θ cos t w0

= −p11r − 1

r

∂

∂θ

[
1

r
(v10 + rv10r − u10θ)

]
, (5.4b)

eθ

α2v10t + u0 v10r + u10 v0r +
1

r
v0 v10θ +

1

r
v10 v0θ +

1

r
(u0 v10 + u10 v0) + α sin θ cos t w0

= −1

r
p11θ +

∂

∂r

[
1

r
(v10 + rv10r − u10θ)

]
, (5.4c)

From (5.4a) we know that there exists a streamfunction ψ10 such that u10 =
(1/r)ψ10θ, v10 = −ψ10r . Thus (5.4b) and (5.4c) may be combined to give

α2∇2ψ10t − α cos t

(
1

r
cos θ w0θ + sin θ w0r

)
= ∇4ψ10 +

1

r

(
ψ0r

∂

∂θ
− ψ0θ

∂

∂r

)
∇2ψ10 +

1

r

(
ψ10r

∂

∂θ
− ψ10θ

∂

∂r

)
∇2ψ0. (5.5)

We are interested in determining the secondary motions generated in the core;
however, it is first necessary to determine the behaviour of the flow in the boundary
layer, since it is that which drives the secondary motions in the core.

In the viscous boundary layer we take

Ψ10 =
1

α

(
Ψ100 +

1

α
Ψ101 + · · ·

)
(5.6)

and the boundary layer coordinate is again

η =
α√
2

(1− r). (5.7)

The equation for Ψ100 is, from (5.5)

1
2
Ψ100ηηηη −Ψ100ηηt =

√
2 cos t sin θW00η, (5.8)

where W00 = (2Rs)
1/2 (sin (t+Φ) + e−η sin (t+Φ− η)) (see (2.14)), which has solution

Ψ100 = sin θ (2Rs)
1/2

[
1
2
e−η sin

(
2t+ Φ− η + 1

4
π
)

+ 1
2
e−η sin

(−Φ+ η − 1
4
π
)

− 1

2
√

2
e−
√

2η sin (2t+ Φ−√2η + 1
4
π)− 1√

2
η cosΦ

+ 1
2

sin (Φ+ 1
4
π) +

1

2
√

2
(1−√2) sin (2t+ Φ+ 1

4
π)

]
. (5.9)

Ψ100 contains time-independent terms, because although W00η has no mean part, the
product cos tW00η does have a mean part. Hence we see that, as η → ∞, not only
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does Ψ100 not tend to zero (displacement effect) but also

Ψ100η → − 1√
2

(2Rs)
1/2 cosΦ sin θ. (5.10)

After an analysis similar to Lyne’s the equation for the steady streaming in the core
ψ

(s)
100, derived from (5.5), is given by the solution to

∇4ψ
(s)
100 +

1

r

(
ψ

(s)
00r

∂

∂θ
− ψ(s)

00θ

∂

∂r

)
∇2ψ

(s)
100 +

1

r

(
ψ

(s)
100r

∂

∂θ
− ψ(s)

100θ

∂

∂r

)
∇2ψ

(s)
00 = 0, (5.11)

subject to the boundary conditions derived from (5.9) and (5.10) that

ψ
(s)
100 = 0, ψ(s)

100r = 1
2
(2Rs)

1/2 sin θ cosΦ on r = 1. (5.12)

(Here ψ(s)
00 and ψ(s)

100 are the leading-order steady terms of a power series expansion in
α for ψ0 and ψ10.)

If we make the transformations ψ100 = R
1/2
s χ100 and ψ00 = Rs χ00, then the equation

to solve is

1

Rs
∇4χ100 +

1

r

(
χ00r

∂

∂θ
− χ00θ

∂

∂r

)
∇2χ100 +

1

r

(
χ100r

∂

∂θ
− χ100θ

∂

∂r

)
∇2χ00 = 0, (5.13)

subject to the boundary conditions:

χ100 = 0, χ100r = 1
2

√
2 sin θ cosΦ on r = 1. (5.14)

We will clearly be able to solve (5.13) for χ100 using the same methods as Lyne (1971)
used for (5.1).

5.2. Analytical streaming solution at small Rs

Analytic progress towards a solution of (5.1) and (5.13) may be made in the limit of
small Rs by considering a small-parameter expansion in powers of Rs (Lyne 1971):

χ00 = χ000 + Rs χ001 + · · · , χ100 = χ1000 + Rs χ1001 + · · · . (5.15)

The leading-order steady streaming problem (5.1) is reduced to a simple Stokes
flow problem, with solution

χ00 = − 1
8
r(1− r2) sin θ − Rs 1

3072
r2(1− r2)2 sin 2θ + O(R2

s ). (5.16)

The steady secondary streaming in the core, to leading order in Rs, proceeds across
the tube from the outside of the bend to the inside. This is in the opposite direction
to the secondary flow in a pipe when the axial pressure gradient is steady (or when
α � 1 as in the quasi-steady case detailed in § 4). Thus whereas the intuitive idea of
‘outwards centrifuging’ is valid for steady flow, it is not relevant for oscillatory flow
and the apparent ‘centrifuging’ is negative and thus directed inwards. Lyne verified
this analytic result experimentally.

The leading-order solution of (5.13), subject to the boundary conditions (5.14), is

χ1000 = − 1
4

√
2r (1− r2) sin θ cosΦ. (5.17)

Thus when cosΦ > 0 this contribution to the streaming proceeds across the tube
from the outside of the bend to the inside (i.e. in the same direction as Lyne’s)
and thus enhances the streaming arising due to the tube being curved. However,
for cosΦ < 0 the contribution is in the opposite direction, and thus diminishes the
streaming. The dependence of the steady streaming on s, given by (5.2), means that



Oscillatory flow in a tube of time-dependent curvature. Part 1 345

its magnitude will increase with distance from the fixed origin. Of course, since we
have considered a small-Rt parameter expansion the effect of this perturbation on the
leading-order secondary streaming will be small.

5.3. Numerical solution at intermediate values of Rs

In order to determine the behaviour of the secondary streaming in the core at
intermediate values of the secondary streaming Reynolds number Rs we must solve
equations (5.1) and (5.13) numerically, which we do using a finite difference method.
Haddon (1982) has solved Lyne’s problem numerically, also using a finite difference
method, but with a different iteration procedure.

5.3.1. Numerical method

Equations (5.1) and (5.13) must be linearized in order to obtain a system of linear
algebraic equations, which can then be solved numerically. This is done using the
Newton–Raphson scheme.

Let n label the iteration number, and define ξn00 as

ξn00 = χn00 − χn−1
00 . (5.18)

The Newton–Raphson iterative scheme for (5.1) is

∇4ξn00 + Rs
1

r

(
∂χn−1

00

∂r

∂

∂θ
− ∂χn−1

00

∂θ

∂

∂r

)
∇2ξn00 + Rs

1

r

(
∂ξn00

∂r

∂

∂θ
− ∂ξn00

∂θ

∂

∂r

)
∇2χn−1

00

= −∇4χn−1
00 − Rs 1r

(
∂χn−1

00

∂r

∂

∂θ
− ∂χn−1

00

∂θ

∂

∂r

)
∇2χn−1

00 (5.19)

which is iterated until a converged solution for ξ00 is obtained. Similarly, by defining

ξn100 = χn100 − χn−1
100 , (5.20)

the iteration scheme for equation (5.13) is

∇4ξn100 + Rs
1

r

(
∂χn−1

00

∂r

∂

∂θ
− ∂χn−1

00

∂θ

∂

∂r

)
∇2ξn100 + Rs

1

r

(
∂ξn100

∂r

∂

∂θ
− ∂ξn100

∂θ

∂

∂r

)
∇2χn−1

00

= −∇4χn−1
100 − Rs 1r

(
∂χn−1

00

∂r

∂

∂θ
− ∂χn−1

00

∂θ

∂

∂r

)
∇2χn−1

100

−Rs 1
r

(
∂χn−1

100

∂r

∂

∂θ
− ∂χn−1

100

∂θ

∂

∂r

)
∇2χn−1

00 . (5.21)

We wish to solve the flow in the circular plane of cross-section of the pipe. However,
since the flow is symmetric about the diameter θ = 0 , π we need only compute the
flow in one half of the pipe. The computational domain is therefore a semi-circle,
polar coordinates (r, θ) are used and grid lines are chosen along lines of constant
radius and constant θ.

Both χ and ∂χ/∂r are given on r = 1 ((5.1) and (5.14)). Since the boundary of
the semi-circular domain is a streamline we have that χ = 0 on θ = 0 , π. We
also have zero normal velocity (in the θ-direction) on the line θ = 0 , π. Thus
∂u/∂θ = (1/r)(∂2χ/∂θ2) = 0 on θ = 0, π.

The governing equations (5.19) and (5.21) are discretized using a second-order-
accurate finite-difference technique. A set of linear algebraic equations is obtained,
which can be written in matrix form. At each Newton–Raphson iterative step the linear
matrix equations are solved using the alternating-direction-implicit (ADI) relaxation
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method. In order to make the ADI scheme converge, it is necessary to under-relax,
using a relaxation parameter, c, where 0 < c < 1. The value of c necessary for
convergence depends on the size of the mesh used. In general, the finer the mesh, the
smaller the value of c required to obtain convergence.

The streamfunction for a given value of Rs is found using the Newton–Raphson
method as follows. Suppose ∆Rs is an increment in Rs and χL is the solution to
the linear problem, ∇4χ = 0, corresponding to Rs = 0. Then the basic stages of the
numerical algorithm are:

(i) Solve the streamfunction equation (5.19), with the corresponding boundary
conditions, at Rs = ∆Rs using χ = χL as an initial guess to the solution.

(ii) Update Rs to Rs = 2∆Rs and solve for the streamfunction using the converged
solution for the streamfunction at Rs = ∆Rs as an initial guess.

(iii) Repeat until the streamfunction at the required value of Rs is obtained.
In order to check the accuracy of the numerical code, we examined the effect

of tightening the tolerance criteria for the ADI and Newton–Raphson schemes
(ε1 and ε2 respectively) and refining the mesh. To ensure that the chosen tolerances
were sufficiently small, we computed the solution at tighter tolerance values and
investigated how the obtained numerical solution changed both quantitatively and
qualitatively. This was done for a range of values of Rs, but most importantly for
the highest value of Rs at which results were obtained (Rs = 300) since this case
will be the most sensitive. For Rs = 300, initially we took ε1 = ε2 = 10−5. We then
computed the solutions at ε1 = ε2 = 10−6. It was found that the maximum difference
between the values of ψi,j obtained at the two different tolerances was O(10−5), and
the qualitative behaviour of the obtained solutions was unchanged.

The effect of grid-refinement on the numerical solution was also investigated.
Initially, the solutions at various Rs were calculated on the coarsest mesh possible
that allowed a convergent solution to be found (as the value of Rs increases, it is
necessary to refine the mesh in order to converge to a solution.) For example, for
values of Rs up to about 170, solutions were obtained using a (21× 21) grid, whereas
for values of Rs between 170 and 300, solutions were obtained on a (31× 31) mesh.
For Rs = 10 and Rs = 50, we also calculated the solution on grids of (41 × 41) and
(81 × 81). For Rs = 10, the maximum difference between the solutions found on a
(21× 21) and a (41× 41) grid was order 10−4 and on a (41× 41) and (81× 81) grid
was order 10−5. For Rs = 50 the difference was O(10−4). Grid refinements were also
carried out for Rs = 100 where again the differences were O(10−4). For Rs = 200 and
300 it was found that the differences were O(10−5). Hence the underlying physics of
the system was captured using the computationally less expensive coarser mesh.

We looked at the effect of tightening the tolerances and refining the mesh on the
maximum value of vorticity, ω, that is obtained. Since vorticity involves second-order
derivatives, ω = −∇2ψ, it is a good quantity to consider, since it is likely to be the
most poorly behaved of the system. It was found that making the tolerances tighter
had a small effect on the maximum value of vorticity obtained. For example, for
Rs = 10, the difference between solutions obtained at the tolerances ε1 = ε2 = 10−6

and ε1 = ε2 = 10−7 was 0.04%. For Rs = 300, the difference between solutions
obtained at ε1 = ε2 = 10−5 and ε1 = ε2 = 10−6 was 0.3%.

Also, for Rs = 10, halving the mesh size resulted in a 0.02% change in the value
of the maximum vorticity. For Rs = 50, halving the mesh size resulted in a 0.1%
change in the maximum value of the vorticity. For Rs = 100, the change was again
0.1%. As the value of Rs increased, however, the percentage change also increased.
For Rs = 200, it was found that refining the mesh resulted in a 6% change and for
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OI

Figure 3. Secondary streamfunction, χ00, for Rs = 0.

OI OI

(a) (b)

Figure 4. Numerical solution for the streamfunction, χ00, for increasing Rs:
(a) Rs = 50; (b) Rs = 250.

Rs = 300, the change was 8%. The computational scheme would clearly have to be
refined if we were to go to higher values of Rs.

5.3.2. Results

The leading-order secondary streamfunction, χ00, at Rs = 0 is shown in figure 3.
The streamfunction is symmetric about the line θ = π/2. Figure 4 shows how the flow
develops with increasing secondary streaming Reynolds number, Rs. The secondary
streaming still proceeds across the centre of the tube from the outside of the bend
towards the inside. As the value of Rs increases, the advection terms in (5.1) become
increasingly important, and it is these effects that we observe here. Figure 4(a) shows
the secondary streamlines when Rs = 50. The stationary point, or vortex centre, is
shifted in the direction of the driving secondary flow, towards the outer wall of the
pipe. As the value of Rs increases to Rs = 250, the vortex centre continues to be
shifted in the direction of the flow (figure 4b).

We note that the solutions for the secondary streamfunction, χ00, at Rs = 50 and
Rs = 250 look similar (figure 4a, b). As Rs increases, however, there is a definite
change in the streamfunction solution which may be clearly seen by considering
the difference between the solutions at various Rs. Figure 5(a) shows the difference
between the streamfunction values corresponding to Rs = 50 and Rs = 10. The
convective motion consists approximately of two counter-rotating eddies. This is
consistent with the analytic solution found at small values of Rs, which gives the first
correction to the viscous Stokes layer solution to be proportional to sin 2θ. As the
value of Rs increases, the convective motion still has the form of two counter-rotating
eddies, but now they are no longer symmetrical and, moreover, are of unequal size
(figure 5b).
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(a) (b)

Figure 5. Difference between the secondary streamfunction solutions at: (a) Rs = 50 and Rs = 10;
(b) Rs = 250 and Rs = 10.

OI OI

(a) (b)

Figure 6. Numerical solution for the secondary streamfunction perturbation, χ100, for increasing
Rs. Results are presented for cosΦ = 1: (a) Rs = 10; (b) Rs = 100.

Next we consider the perturbation to the secondary streaming that arises due to
the introduction of time-dependent curvature. We present results for the secondary
streamfunction, χ100, at values of Rs = 10 and 100 (figure 6a, b).

The interesting feature here is that the direction of the perturbation to the steady
secondary flow is dependent on the phase difference, Φ, between the oscillatory
pressure gradient and the time-dependent curvature. When cosΦ is positive, the
perturbation to the secondary flow is in the same direction as for Lyne. When cosΦ
is negative the reverse is true. The results presented in figure 6(a, b) are for cosΦ = 1.

At this order the advection effects are stronger. Whereas in (5.1) we saw that the
streamfunction χ00 was advected by itself, here the streamfunction χ100 is advected by
χ00 and χ00 is advected by χ100 (see equation (5.13)). Thus the advective effects are
doubled, and this is reflected in the greater value of the streamfunction χ100 for a
given value of Rs, and the greater advection of the vorticity for a given value of Rs.

The direction in which the vortex centre of the secondary streamlines is ‘skewed’
is independent of the sign of cosΦ. It is always towards the outside wall for the
range of secondary streaming Reynolds numbers that we consider here. Thus, when
cosΦ is negative, we have the interesting situation that the direction of skewing of
the stagnation point of the secondary streamlines is in the opposite direction to the
driving circumferential velocity. When cosΦ = 0, χ100 is identically zero and there is
no contribution to the steady secondary streamfunction at this order.

The dependence of χ100 on s means that the magnitude of the perturbation to the
streamfunction will increase with distance from the fixed origin.

5.4. Solution at asymptotically large values of Rs

At large values of Rs it is hypothesized that the effect of viscosity is confined to

boundary layers of thickness R
−1/2
s near r = 1. These come together at θ = 0 and
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erupt across the centre of the tube. Lyne (1971) postulated a scheme in which the

wall boundary layers are supplemented by a layer of thickness R
−1/2
s across the plane

of symmetry, the bulk of the core flow being inviscid. In the inviscid region the
streamlines are closed, and therefore the vorticity is uniform and of opposite sign in
the two regions (Batchelor 1956); one reason why the shear layer across the middle
of the tube is required is to smooth out the discontinuity in vorticity between the two
inviscid regions.

Haddon (1982) gave a numerical solution of Lyne’s (1971) steady streaming problem
(equation (5.1) above) which he took to large values of Rs (up to 3000). He was able
to show that the vorticity distribution in one half of the pipe cross-section (along
r = 1/2, 0 < θ < π, and along θ = π/2 , 0 < r < 1) became approximately uniform
over a substantial part of the region. Moreover, the value of the vorticity, in the limit
as Rs → ∞ and the mesh size → 0, was (to two significant figures) equal to −0.56,
precisely the value predicted independently by Lyne. We did not take our numerical
results to a high enough value of Rs to achieve this limit, although the leading-order
vorticity profile along θ = 3π/2 did tend to flatten out near r = 1/2 at the larger
values of Rs. The large-Rs solution to the perturbation problem (5.13)–(5.14) has not
been obtained.

6. Physiological application
In the context of blood flow in the coronary arteries, relevant parameter values are

(to one significant figure)

kinematic viscosity of blood ν = 4× 10−6 m2 s−1 ,
period of the heart beat T ≈ 1 s.

We consider those extramyocardial arteries whose curvature is single-signed and varies
relatively slowly with longitudinal position. For such arteries we may take (Guyton
1986)

radius a= 2× 10−3 m,

radius of curvature R̂ = 3× 10−2 m,
peak time–averaged blood velocity Up = 3× 10−1 m s−1,

velocity amplitude Ŵp = 2× 10−1 m s−1;

moreover, if we assume that the volume of the left ventricle is halved during systole,
then the radius of curvature will be reduced by a factor 2−1/3 ≈ 8× 10−1. From this,
we find

δ0 = a/R̂ ≈ 0.07, ε ≈ 0.1. (6.1)

Also

Re =
Up a

ν
≈ 150, α2 =

a2

νT
≈ 1. (6.2)

We considered a dimensionless oscillatory pressure gradient:

−ps = α2 Wp cos (t+ Φ), (6.3)

where Wp is the dimensionless velocity amplitude that would be driven by such a
pressure gradient in a straight pipe containing an inviscid fluid. Here the velocities
were non-dimensionalized with respect to ν/a and so

Wp = aŴp/ν ≈ 100. (6.4)
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The secondary streaming Reynolds numbers, Rs and Rs1 , are defined as

2Rs =
(2δ0)W

2
p

α2
=

(2δ0)

α2

(
aŴp

ν

)2

,

Rs1 = (2δ0) εWp = (2δ0) ε

(
aŴp

ν

)
(6.5)

(cf. (2.32)) and so

2Rs ≈ 1320, (2Rs)
1/2 ≈ 36, Rs1 ≈ 1.4. (6.6)

The parameter Rt, (2.33), is

Rt = αε ≈ 0.1. (6.7)

When considering the flow driven by an oscillatory pressure gradient, the curvature
was assumed to be small (δ0 � 1) and to vary by a relatively small amount (ε� 1),
assumptions that are reasonably well satisfied in the coronary arteries.

Initially α and Rs were kept order one compared with δ0 and Rt. A small-parameter
expansion was carried out in powers of δ0 followed by a small-parameter expansion
in powers of Rt, so that we assumed that δ0 � Rt. The equations were then solved
for asymptotically large and small values of the frequency parameter, α.

From (6.2), (6.6) and (6.7), the assumption that α and Rs are order one compared
with δ0 and Rt is reasonably well satisfied. Moreover, although δ0 is not much
smaller than Rt, it is smaller. The assumptions that α� Rs (low-frequency case) and
Rt � 1/α2 (high-frequency case) are approximately satisfied; however α ≈ 1 and so is
neither large nor small. In § 5 results were found for small and intermediate values of
Rs. From (6.6) we see that the most physiologically significant solutions correspond
to those found numerically for intermediate values of Rs.

It appears that at present, the small-α case is most applicable to flow in the
coronary arteries. For the small-α case, the magnitude of the ratio between the first
perturbation to the time-dependent axial wall shear stress, due to the introduction
of time-dependent curvature, (4.13), and the leading-order time-dependent axial wall
shear stress (4.3) is, with s = O(1), approximately 8 × 10−4. The corresponding ratio
between the azimuthal wall shear stress perturbation (4.14) and the leading-order
azimuthal wall shear stress (4.6) is 1 × 10−2. Thus the predicted effect, for this
particular range of parameters, is rather small. Our results are more significant for
the light they shed on the qualitative effect of the time-dependent curvature on the
distribution of wall shear stress. It was found that the Coriolis force terms, introduced
into the equations by the time-dependent curvature, led to the generation of a steady
secondary streaming perturbation. For low frequency, this steady streaming was
towards the outside of the bend when the phase difference, Φ, between the curvature
and the axial pressure gradient was such that cosΦ > 0 (the opposite being true when
cosΦ < 0). This perturbation to the steady streaming resulted in a correction to the
axial velocity profile, with corresponding perturbations to the axial wall shear stress.

During systole, the increased intramyocardial pressure resulting from the contrac-
tion of the thick-walled left ventricle hinders blood flow into the heart muscle (but
does facilitate venous drainage by compressing the coronary sinus and other veins).
When diastole begins, the rate of flow rapidly increases to reach a maximum level in
early diastole, from which it gradually declines. Now, when the ventricle contracts,
the rotation of the artery is negative, and so cos t > 0. The phase, Φ, must be such
that the driving oscillatory pressure gradient rises initially and then starts to fall, as
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the flow of blood is hindered by the increased intramyocardial pressure. At the start
of diastole, the rotation of the artery is positive, so that cos t < 0, and the phase
difference, Φ, must be such that the driving pressure gradient rises rapidly and then
gradually decreases. For this to be true, it is necessary that π/2 < Φ < π, so that
cosΦ < 0. Thus for small α, we see that there is an increase in wall shear stress on the
inside wall, which may be protective against atherosclerosis, and a decrease on the
outside wall. Since atherosclerosis is more often found on the inside of the curve, this
suggests that the prevalence of atherosclerosis would be worse without movement of
the artery.
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